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Classical diffusion and quantum level velocities: Systematic deviations
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We study the response of the quasienergy levels in the context of quantized chaotic systems through the
level velocity variance and relate them to classical diffusion coefficients using detailed semiclassical analysis.
The systematic deviations from random matrix theory, assuming independence of eigenvectors from eigenval-
ues, are shown to be connected to classical higher-order time correlations of the chaotic system. We study the
standard map as a specific example, and thus the well-known oscillatory behavior of the diffusion coefficient
with respect to the parameter is reflected exactly in the oscillations of the variance of the level velocities. We
study the case of mixed phase-space dynamics as well and note a transition in the scaling properties of the
variance that occurs along with the classical transition to cH&1963-651X%99)11810-5

PACS numbegps): 05.45-a, 03.65.Sq, 05.45.Mt

[. INTRODUCTION behavior of disordered systems could be extended to chaotic
ones as wel[8].

The quantum spectrum is well known to reflect in several The variance has a significance beyond setting the scale
ways classical integrability or its lack thereldf,2,4. For a  of the Gaussian distribution of velocities. It enters as a nor-
completely chaotic, quantized system the energy eigenvaluggalization required to uncover possible universalities in
have characteristic, in fact, universal fluctuation propertieParametric level correlations. It encodes the system specific
that coincide with random matrix theofRMT) universality ~ characteristics of level motions as a function of an external
classes and the eigenfunction components are also distrif&rameter. Level correlations and velocities are experimen-

uted as Gaussian random variables. However, there are inlly accessible, for example, in microwave cavitjag] or
portant deviations from this dull uniformity imposed by the quantum dots. Although universal parametric correlations are

underlying (asymptoti¢ deterministic chaos. Classical peri- not well established experimentally, a recent experiment, ex-

odic orbits, a dense set of measure zero unstable orbits, ir?Jl_lomng the similarity of elastomechanical wave equations of

troduce characteristic deviations that are well documente exural modes of plates to the Schrodinger equation, seems

) ! ) . o lend support to if13].
including the phenomenon of eigenfunction scarfiay The In the case when the changing parameters are Aharanov-

movement of energy Ieyels with the variation of_ an externaIB hm flux lines that do not lead to any classical dynamical
parameter, level dynamics, has also been studied by severgianges but do lead to important spectral modifications, cor-
authors with different motivationg5-10. It is known that  re|ation between level velocities were semiclassically consid-
the motion of the energy levels as a function of the paramg e in[14]. For a treatment of Hamiltonian flows SEE5).
eter, now a psuedotime variable, is completely integrableRecent closely related work, in the context of Hamiltonian
whether the system is itself chaotic or fidl]. Nevertheless, flows, is also found if16] where detailed results about the
there are characteristic features that are introduced by chaagariance of level velocities are presented for billiards.
for instance, avoided crossings that may be characterized by We make precise the connection between classical diffu-
the second derivative of the energy levels, i.e., the curvasion and the variance of the level velocities in the simpler
tures. context of quantized maps or more generally time periodic
Here we study level “velocities,” and relate them directly systems where detailed semiclassi@ald classicalanalysis
to certain classical diffusion coefficients based on the diffu-is possible. We evaluate the variance for the standard map as
sion of the variation of the action with an external parametera function of the external kicking strength and show system
Although we are using the term velocities, we are not disspecific correlations in the form of Bessel function oscilla-
cussing adiabatically changing a system, just the slopes dions. Since two-dimensional area preserving or more gener-
the level curves as a function of a controllable parameter. lally symplectic maps are Poincasections of Hamiltonian
has been known for some time that these are Gaussian diflews, our analysis also reflects upon these systems and is
tributed with a variance that has been related to a classicalonsistent with results derived therein. On the other hand,
“generalized conductance,” especially in the context ofdue to the vastly simpler numerical and analytical work in-
weakly disordered metallic grains. Methods employed wererolved with maps, they lend themselves to more detailed and
mostly field theoretic and RMT-based, while numerical extensive work.
simulations of chaotic billiards led to the conjecture that the We relate our analysis to a semiclassical evaluation of
expectation values of generic operators in the eigenbasis, as
well as touch upon two parameter variations and their corre-
*Permanent address: Physical Research Laboratory, Navrangputations. The case when the dynamics leads to a mixed phase
Ahmedabad 380 009, India. space is generic and we find a Weyl-type expansioh for
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the variance. The principal contribution in this regime is wellvariables are monitored just before the kicks, aird
predicted by a simple classical correlation, which vanishes as-k/(2)2. The standard map is of central importance as
the system undergoes a transition to chaos. The differemhany other maps are locally described by this and the poten-
scaling behaviors in effectivé for mixed and chaotic sys- tial may be considered to be the first term in the Fourier
tems can be experimentally observed. We will consider thexpansion of more general periodic potentials. The param-
standard map as an example. Others before us have usetkrk is of principal interest and it controls the degree of

such systems to study level dynamj&17]. chaos in the map; a complete transition to ergodicity is at-
tained above values ok=~5, while the last rotational
II. THE STANDARD MAP AND RANDOM MATRIX Kolmogorov-Arnold-Moser (KAM) torus breaks around
THEORY k~.971[26].

] ] ] The quantum map in the discrete position basis is given
Here we define the model studied below and derive thgyy [27]

RMT predictions for these. Let the classical Hamiltonian

have the form 1 ,

njU|n"y=—exdiw(n—n’)“/N

H=p’2-\V(q) 2 &(t—n), (D N
n=-—w

Xexy{i ~—cog§2nw(n+a)/N]|. 5)

so that the Floquet operator connecting states just before 2m

kicks is given by The parameter to be varied will be the “kicking strengtk,”’
_ 2 . while phasea will be used to avoid exact quantum symme-
U=exp(—ip™/2h)exdizv(q)/i]. @ tries, andn, n’=0,...N—1. The eigenvalue problem of the

The time between kicks is taken to be unity, as there are twdnitary matrix is written aw,|¢i>,:e_Xp(_i,¢J)|¢i>- The ei-

independent parameters already present, namebnd N. genangles;’aj_ are real gnd th¢|rvar|at|on with the parameker

Such systems, known as quantum maps, were first studied [#fVel velocities are given simply by the matrix elements

[18,19 and led to the uncovering of dynamical localization, dé N N

akin to Anderson localization in disordered conduc{@@. d_k]: 2—(1,0,-|V| )= 2—(1//j|cos(27rq)|¢j>. (6)

We will typically consider the above to be the way the pa- ™ ™

rameter of intere enters the problem. .
While this is ?\inap on thepplanéfor one-degree-of- The 27 factor is the result of choosing as the relevant

freedom systemswe consider their restriction to the torus Parameter and nak/2m and we retain this as this corre-
[0,1)%. This is essential as we have in mind bounded Hamil-SPONds to the more conventional usage where the last KAM
tonian systems and not open scattering ones. Periodic bounf2rUs breaks when the parameter value is just under unity.

ary conditions are imposed in bothand q directions. We It is then clear that studying level velocities is equivalent
will assume that/(q) is a smooth function o0, 1) With to studying expectation values of operators in the eigenbasis.

unit periodicity. Denote its average as Th_us, if we requirg ‘mA"m we WOUI.d. look at the modified
unitary operatofassumingA is Hermitian

V= f:V(q)dq. 3 U=Ugexp —iNA/A), 7

. ) ) . whereUy is the quantum system under study. Then, the ex-
Let the quantum map be the dimensional unitary matrix pectation values are simply the corresponding level veloci-
operator denoted by. Maps, such as the standard map re-jjes evaluated ak =0, multiplied by#. If one may identify
stricted to a torus, are quantized using standard canoniCghe classical canonical transformation generatedAbywe
quantization[21]. Periodic boundary conditions in both ca- ¢oyd study a modified classical map as well. However, since
nonipal variables i_mpose a finite number of states, which i§\:0' it is the properties of the original classical map that
the inverse effective Planck constarit1/N). Thus, the | pe relevant. Referenci28] already discussed the gen-
classical limit is approached in the largeé limit. Various  gra| problem of semiclassical evaluation of matrix elements

quantum maps on the torus have been studied and form afhg our following work may be viewed in this context as
important part of the literature on quantum chaos due to thei,q.

inherent simplicity[22—25. The discrete spectrd levels  From the Gaussian distribution of eigenfunctions for a
obtained are then analyzed for various properties, in particUgyantum chaotic system we expect the level velocities be
lar, here the eigenangle velocities are obtained. similarly distributed. We will concentrate on the variance of
The classical standard map is given by the recursion  {nese velocities namely, the sum:
Qi+1=(qi+pi+1)mod1l), (4) 1N (dg12 1N (de 2
| =3 |5 R Z (%)) @
Pi+1=[pi— (k/27)sin(27q;)Imod 1), =1 =1

wherei is the discrete time. This is the solution to the Hamil- We will assume, as is the case with the standard map ex-
tonian equations of motion for the potentiaV/(q) ample, that the average vanishes, = 0. Later we will
=cos(2rg) and the Hamiltonian in Eq1). The dynamical generalize to the case of a nonvanishing average, or expec-
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(. ' ' 11 g2 VI = (Kl WK il ) ).
] (10

A crucial step in writing down the above is to assume the
independence of the eigenfunction components from any
specific position eigenvalues. While this is a reasonable sta-
tistical assumption we will see below that it misses important
correlations that are incorporated naturally in semiclassical
treatments. This is the origin of the nonuniversality of level
dynamics, as this implies system-dependent correlation ef-
fects. The same perturbationg)(applied to different chaotic
systems will result in different statistical responses, unlike
the predictions of RMT.

We use standard results from RMT relevant to the Gauss-
ian orthogonal ensemble, which is applicable here as well as
the relevant circular ensembld9]. In particular,

4 g%/ N

10

° ” 7 ® M= iy ~we Kl din)F)

FIG. 1. Scaled variance as a function of the paramktex 1 1
=300 anda=0.35. The inset shows a part of the plot magnified; = m~ N2
the points are numerical data while the smooth line is twice the
diffusion coefficient. Quantities plotted are dimensionless.

We finally get
tation values of operators with nonzero traces. Figure 1
shows a scaled? as a function of the parametkerAt about 5 —
k~5 the variance settles down to a near constant; this value o RMT:ﬁV . (13)
coincides with the disappearance of major islands of stability
in the classical phase space. What interests us primarily here, . —
however, is the clear oscillations that persist as a function ofS & special case for the standard mép=; and we get
k right into regions of large chaos as shown in the inset. awr=N/4m?. This last result explains the value about

First, we study the value around which the oscillationswhich the oscillations occur in Fig. 1. This implies that the
occur, as this is provided by assuming RMT models. Usingesponse of the system as measured by the movement of the
Eq. (6) we get energy levels is essentially the intensity of the perturbation.

For chaotic systems then the response is independent of the

N1 NTT 2 system’s detailed dynamical properties. We must also point
ohr=7-2 2 | 2 KnlmPVI(n+a)/N] i i
RMT= 42« | = K Pm out that when time reversal symmetry is broken the response
is half as large. We now turn to the systematic oscillations
N VDNt that are not readily predicted by random matrix theory and
=mm2:0 ngo [{ ol YLV (N+@)INTY2 are manifestly system dependent.

IIl. SEMICLASSICAL THEORY
+ 2 Kl M YAV (n+a)/IN]

n#n’ A. The chaotic phase space

We first develop in some generality expressions for the
. ©) variance of the level velocities in which semiclassical meth-
ods can be easily applied. We write a Gaussian smoothed

The eigenfunctions have been expanded in a basis thr(:ljte nsity of state$30] as

diagonalizes the perturbation, which we have taken to be %
the position basis. Since we assume a zero-centered or trace- pM(p)= > Fy(n)exping)Trun, (12
less pertubation, n=—

XV[(n'+a)/N]

N—-1

S V[(n+a)/N]=0 where Fy,(n)=exp(—n%2M?)/(2) is introduced to avoid
n=0 '

divergences. The exact spiked density of states is obtained in
the limit M —c although almost all levels will be resolved at
We use the square of this relation in £6) while replacing M=N, as the mean level spacing isr2N. The smoothed
eigenfunction components by their ensemble averades step functionN,,(¢) is the integral of the level density with
noted by angular bracketto derive that respect top. We derive then that
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2

2n(dNw(#)\2 MNo2(k,N) " W( S 40
fo (T = Tr(U"V)| % A} le V(aP) +p§p, AAL
R ) % v 3 ver)
:ZWHZWT TN X 2,1 v(aP) 121 v(gP)
(13) X ex 2miN(S,~ Sp)]. (18)

The termn=0 does not belong in the sum, and it is under-ps js usual, we have separated the diagonal contribution
stood that the first equality is an approximation that becomegom the “off-diagonal,” which corresponds to distinct pairs

exact aM —c. From this expression it follows that itis the of orpits, with distinct actions. We have also assumed for
long time traces of the propagator, and therefore semiclassimpiicity, as is the case with the specific parameter variation

cally, long periodic orbits that are important. chosen above in the standard map, ¥it) is only position
Another very similar route is through the identity dependent; this does not alter the results below. We have
N_1 also included the phases into the actions.
n/y — , , Y Since we expect that long periodic orbits are important,
THU™V) 121 (Wil VIgexe=ign), a4 the diagonal approximation, which relies on random phases
) ) may be violated due to subtle correlations among their ac-
thus implying that tions. The time at which we may expect action differences of
N the order of# is the so-called log-time, or Ehrenfest time.
o2(k,N)= m(|Tr(U”V)|2>n, (15  We argue that action differences are of the order of the orbit

separation, and since areas of the orderzoffor two-
dimensional mapswould be populated with multiple peri-
odic orbits beyond the log time, their action differences
would also be comparable with. However, long periodic

X X Yvit actions are randomly distributed and will acquire cor-
nections with the standard map above we would t&ke | o|aions only around the Heisenberg time. At this time the

= cos(2mq). _ _ o off-diagonal terms will dominate the sum, as happens if we
Now we make use of the semiclassical approximation Ogimply consider(|Tr(U)|2),, which is asymptoticallyN,

the trace 9f the propagator as a sum over periodic orbitgjje the diagonal term is linearly increasing in time.
[1,31 that is However, the off-diagonal term vanished due to the sums
of V(q) over very long periodic orbits. We may write for
Tr(UM~n> Al exp(2miNS)" —imv,/2), (16)  two distinct orbitsp andp’ after assuming uniform measure
p and replacing time averages over the periodic orbit, by the
phase-space average that

where the angular brackets indicate averaging over tirime
the neighborhood of larga. We assume as is relevant for
chaotic systems that there are no degeneracies. To make c

whereA" =1/ 2 sinh¢,/2)], and the sum is over periodic

orbits of periodn that are labeled bp and have a Lyapunov n n o

exponent\,. The actions of these orbits are denote(ﬂji) ( 2 V(qu)) ( Z V(qu')) ~nV2, (19

and are calculated from the generating function of the clas- =1 =1

sical map. The phases, are Maslov-like indices and will o ) — .

not concern us here. From our initial assumption that=0, the off-diagonal term
There is also a generalization of the above, which is parv@nishes. The diagonal term is nonvanishing as we once

ticularly easy to derive when the perturbation is diagonal in@dain treat periodic orbits as ordinary long chaotic trajecto-

the position(or momentun basis. ries and derive that
n 1 n 2 n
Tr(U"V)~ > AV exp(2miNSY —i7py/2) 2, V(XP). 5(121 V(Q,")) ED(k)=C(0)+2|Zl cih, (20
p =1 = -
17

where the time correlations are replaced by classical phase-

Here,V(xJP) is the value of a phase-space representation a$pace averages due to ergodicity.
the operatolV that is evaluated along the periodic orbit la- L
beledp and at the point labeled An appropriate generali- . . |
zation in the energy domain for continuous time systems is C(H=(V(go)V(an)= ZquOdeV(qo}V(f (0. Po)).
found in[28]. The sum around the periodic orbit of the func- (21)
tion V is essentially the derivative of the action with the
parameter, and we may use either the first trace formula iwheref'(qq,po)=q,, f' is the integrated dynamics in tine
conjunction with Eq.(13) or the second trace-formula with and.A denotes both the phase space and its @nethe cases
Eq. (15). considered this is unily We assume that these exist, and are

We take the second route as we connect with the firstecreasing with, typically exponentially for chaotic systems
subsequently. Taking the modulus of the second trace forand that a few terms may be sufficient. This is not estab-
mula gives lished in generality and complications may arise due to mar-
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ginally stable orbits leading to nonexponential behaviors. Fotal action of a periodic orbit is equal tosg‘)
the standard map, coefficients up@¢2) are dominant and =3,L(q;.,0;;k), where the sum is over the periodic
sufficient to see the essential behavior. We have dropped thsvints of the orbip. Thus we derive, after assuming that the
index p as now we will treat such long periodic orbits as orbit is not at a point of bifurcation, that for a periodic orbit,
generic nonperiodic orbits. Indeed by using the ergodic theo-

rem we have already abandoned any particularities that may dg &SE)”)

arise due to the orbit being periodic. Later, we remark on a dk ok - (26)
case when we may not neglect off-diagonal terms.

The alternative route is to take the derivative of the firstwe have not used the partial derivative sign in defining the
trace formula and use E@13). Again we neglect the off- |evel velocities although we assume that only one parameter
diagonal terms for reasons given above. We will assume thag varied. This is due to the subsequent fact that when the
the derivatives of the actions with the parame#mtion ve-  classical action derivative is written, it is a total derivative, in
locities), for a given period or period interval, are such thatas much as the periodic orbit itself changes with the param-
their average is zero while their variance is proportional toeter. These two, however, are shown to be equal in the case
the time period. This assumption is equivalent to the vanishef periodic orbits.
ing of the phase-space averageM{f]) and the presence of The variance is given by
ergodicity. This was noted for general Hamiltonian systems
in [32], and we will see below in the context of maps how <<d “))2> < " >

P P

this simply arises. We replace then for each timiae indi- dk X cog2mq;)co 2m))
vidual action velocitiegsquaredl by the variance,

i,j=1
ds)”
(&

o _In the equality the sum is over different times along a given
where the angular brackets indicate the average over periodigariodic orbit and then averaged over all periodic orbits of
orbits of periodn. . S . _ periodn, while the approximation arises from a replacement
_ Ineither approach, thethlformlty principld3] is applied  of the average by the usual ensemble average and retaining
in the form that there are™/n orbits each with a Lyapunov: up to the second-order time correlation. More precisely
exponent approximatelyn per unit time. Then |A§,“)| C(0)=%, C(1)=0, andC(2)=J,(K)/2, whereJ,(k) is a
~e ", and assuming near equality of the topological en-Bessel function. These are derived from
tropy h and\, we derive from Eq(18) that

2 n
) > =D(k)n, (22) ~5[1+23,(k)]. (27)
p

1.0 11
ITr(U™V) P~ gD(K). @ -3 codma)~ | | codemadadp-3,
1= 0Jo
Similarly from the other approach,
n

1
C(1)= 2, cod2md;)cos2mq;.1)

2 NZ
“94—772D(k)- (24

AT
n?ldk

11

The tilde sign in the above equations implies that the left- ~f f cog2mq)cog27[q+p
hand side can be expected to be the right-hand side in an 0./0
average sense. The spread in timewill also reflect the _ ; _
spread in the average action velocity diffusion coefficient (ki2m)sin(2mq)]1dq dp=0, @8
D(k) with period. Results not shown here indicate that in the 1 1
chaotic regime this is an exponential distribution. The factor c2)==> COS(Zqu_l)COS(Z'qui+1)~f f
g inserted above is due to the fact that symmetries can im- ni=1 oJo
pose distinct orbits to have identical actions. This factor must

be determined from classical and quantal symmetries, and X cog2m(q—p)]cog2a[q+p— (k/2m)

includes phase-space symmetries. We finally get then from X sin(2q)]}dq dp
either approach the response in terms of the variance of the
level velocities: =J,(k)/2.

) The symmetry factor igg=2 for the standard map if we

a (k’N):ng(k)' (29 assume time-reversal invariance alone. This is the case for

the data presented in Fig. 1 as we have intentionally broken

Thus the variance of the level velocities is proportional tothe phase-space symmetry in the quantum system by assum-

a classical diffusion coefficient that determines the diffusioning a=0.35 (generic valug rather thana= 0.5, which will

of action velocities of periodic orbits. More explicit expres- lead to twice the variance. Periodic orbits are either self-
sions for this coefficient are now derived. Area preservingsymmetric or more generically have symmetric partners with
maps such as the standard map have a generating functidtentical actions. The Bessel functions are characteristic of
L(gi;1,qi;k) from which the map may be derived as the diffusion coefficient in the standard map; the above
dL1dqg;=—p; anddL/dq; 11 =p; .1 (Percival in[2]). The to-  simple derivation was proposed in the context of determin-
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istic diffusion in[34]. However, we note that the diffusion T ' T L
relevant for level velocities is the diffusion in the action ve- L
locities and not the momentum, which is the usual quantity i
in which diffusion is studied35]. “aor
The linear time dependence is a consequence of ergodic
ity, whereby time averages are replaced by phase-space a
erages, and the coefficient is also easy to find and is the w0k
scaling of the parameter introduced to uncover possible uni-.
versalities in level dynamics. These then are the oscillations~_
observed in the figure. The bold line in the inset 3 (X) ® I
=[1+2J,(k)]. The significant deviation around the first & |-
minimum in the inset K~6.5) from theory could be due to
the presence of small stable islands, which are the acceleratc
modes and are known to lead to anomalous transport in the
standard magChirikov in [2]). 10

B. The mixed phase space

The regime where there is a mixed phase space consistin = 4 -
of large stable regions is generic, and in this case the analysi A E N SN I N B
above fails: the assumptions about the trace formula and th 0 5 10 15 20 25
uniformity principle operate only under conditions of com-
plete hyperbolicity. While in the completely chaotic regime £ 2. same as Fig. 1, comparing mainly in the mixed phase-
the variance scales & in the mixed phase-space regime it space regime the exact varian@ots with the classical estimate
(principally) scales as\?. This relates to the large hump in (line). The classical estimate is after averaging over a hundred time
Fig. 1, to which we now turn our attention. One way of steps. Quantities plotted are dimensionless.
relating the variance to classical quantities is to recognize
that dratic to a linearN dependence. Based on this observation

we may write a general expression for the variance of the
o2(k,N)= %{Tr(U‘”VU”V))n, (29) level velocities as a Weyl series with principal terms

a?(k,N)=c1(k)N+c,(k)N?, (31
where the average is once more the time average. Thus the
variance of the quantum level velocities is directly the timewherec;(k) andc,(k) are system dependent and we have
average of operator autocorrelations. We consider the cagven above their expressions assuming only one of them is
when the average level velocity is zero, as the generalizatioappreciable. Note that we have not evaluatg(k) in the
is evident. Replacing operators by the corresponding classimixed phase-space regime, and that this will not in general
cal observables, we expect to get the variance in the mixedanish. On the other hand, we expect tbgtk) vanishes as
phase regime. This is particularly successful as we are dea# classical transition to chaos occurs. This is illustrated in
ing with averages over the entire quantum spectrum. Thubig. 3, wherec,(k) is evaluated based on a best fitting curve
we replace the trace operation dividedNyvith the classical using fiveN values, equally spaced, between 100 and 500.
phase-space average to get The curve is fitted by assuming a third-order polynomiaNin
for which the coeﬁécient oN? returned by the fit was always
5 _ ! ! n of the order of 10° or less.

7 (k’N)C'_mL dpofo ddoV(do)(V(@™(do Po)) In general, the RMT result derived earlier, Eg1), will
(30) be correct under the assumption tRgt) = C(0)dy, , imply-

ing delta correlated processes. Thus the departures from uni-
whereq™(qo,po) is the position aften iterations starting versality is related to higher-order time correlations. The re-
from the initial condition @q.pg). For the case in Fig. 1, sponse of the system is not only dependent on the strength of
V(q)=cos(2mq) and Fig. 2 compares in the mixed phase-the perturbation, but also on the dynamical correlations in-
space regime the exact quantum calculation with a purelyerent to the system.
classical simulation corresponding w@?(k,N).,. We see
that a simple classical simulation reproduces the curve ex- C. Generalizations
tremely well, including the secondary hump, until arodnd _ o
~2. Itis quite remarkable that the classical curve contin- We remark now on the general cage: 0. This implies an
ues to pick out the initial Bessel function oscillations in the Overall drift to the energy levels due to changing phase-space
deeply chaotic regime. In the figure the time average is dongolumes. Using Eq(19) and adding and subtractingV?
over an ensemble for the first hundred iterations, and thérom the diagonal part of Eq(18), we get after using
oscillations indicate short time correlations that will strictly (| Tr(U")|?),=N,
disappear with increasing time. N

The transition to classical chaos is accompanied then by a 2 _ v,

transition of the variance of the level velocities from a qua- o (kN)= 772 9lD () = V7], (32

2
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FIG. 3. The coefficient,(k) as a function of the parameter;  FIG. 4. The quantum correlation between the matrix elements of
note that it reflects the classical transition to chaos. Quantities plotthe two operators cos®]) and cos(4rq) whose classical correla-
ted are dimensionless. tion vanishes in the chaotic regime. Quantities plotted are dimen-

sionless.
The large chaos limit of this is
FunctionD is a generalization of Eq20) involving the dy-
namical correlation between the functiovis andV,:

N .
o?(2,N) = 7 g(VZ-V?), (33

1 oo
. D()\l’)\Z):Z( > JVl(qupO)VZ(QI’pI)qude ;
and is the RMT result. == JA

Variations of two independent parameters is an important (37
prob!em, considering that many novel effects., mclud.mg 9%%%he dynamical variables after a timke integrated from
metric phases may be observed. Here we will consider, in ) are denotedd| ,p;) while D, , refer to the correla-
generalization of the above, correlations between indepe o Po . 1, P1) WANE Lg 2 , .
dent parameter variations. We assume that the level veloc jons appropriate to them individually and defined ea”'ef In
ties are given by the matrix elements g. (20). Note that the backward and forward correlations

y (I<0J>0) are not, in general, equal. We remark that our
ab N derivations have assumed time-reversal symmetry, and that
g — (| Vil ) (34)  thefactorgis responsible also for phase-space symmetries. It
o WilVil¥j/ ! -
may be generalized to include the factors that come due to
_ . _ breakdown of time reversal, or inclusion of spin.
wherei=1, 2, and\; are two independent parameters while  We finally consider the situation where not only the aver-

Vj are two Hermitian operators. Thus the correlations conygesy: vanish, but also there is no tangible correlation be-
sidered below are a!so correlaqo_ns between diagonal matriXyeen them, i.e.D(\1,\,)=0. Then, the semiclassical ex-
elements of two arbitrary Hermitian operators. pressions above give zero and are incapable of capturing the
We derive then that small albeit finite and rapid oscillationavith parameter
This limitation is, of course, evident all along, including Fig.
1, where the Bessel function captures the low frequency os-
cillations only.
In Fig. 4, is one such example where we have considered

Using methods as outlined above the correlation function i&/1= c0S(270) andV,=cos(4rq). The parametex is set at

N,

=z

L 99599

N
— — n -n
Nj:l (9)\1 ‘9)\2 4772<T|'(U Vl)Tr(U V2)>n- (35)

semiclassically evaluated and we get zero so that the relevant classical system is still the standard
map, while the other parameterkisbove. The correlation is

1 Ibi I ab\ [ od: seen as a function of this last parameter, the average actually

(N N\p)= ( <_J _J> _<_J> <_J> ) vanishing. We see that this measure too captures the transi-

(0102) \ \ Ny I\, i \INgf N ONgf tion from mixed phase space to chaotic phase space, but that

- after the transition there are only extremely rapid oscillations

[D(N1,N2)—V1 V5] about zero, although there are quite frequently fairly large

~ = =" (36) correlations. In fact, the frequency of the oscillations are so
\/(Dl_vl )(D2—V59) rapid that they seem to have self-similar properties as a ran-
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dom fractal. We may estimate the order of magnitude of the The possibility of using the level velocity in conjunction
frequency if we assume that these arise from the off-diagonakith wave-function intensities in a measure of phase-space
part of the semiclassical sums. The magnitude of the paramecalization has been proposggb], and it is hoped that this
eter change needed to change a typical orbit actioh by  detailed understanding of the level velocities will help in this
(1/N) is needed. From the fact that action changes have as well. In particular, this measure is a special case of the

variance proportional to the period, we datS|~n|AX|,  correlation between two operators discussed above, with an
and thereford AN|~N~%? if we take as the period=N,  important complication being that the Wigner transform of
which is the Heisenberg time and represents the time byhe relevant operator, a projector in phase space, varies over
which the spectrum is practically resolved. scales of ordefi. We have also noted that the RMT results,

In conclusion then, we have studied variances of levehfier assuming independence of eigenvalues and eignefunc-
ve_Iocmesh and their generalizations in thhe ChﬁOth as well agons are capable of predicting the level velocities only in the
mixed phase-space regimes. Noting that the transition tq .. ¢ extremely large chaos, or equivalently ignoring all

ch_aos is perfectly reflect_ed in this measure, we deri_ved OIqﬁigher—order time correlations other than the zeroth.
tailed formulas for them in terms of classical correlation co-

efficients and illustrated this with the help of the standard
map. The mixed phase-space regime was surprisingly well
captured by a simple classical estimate. The observations of
oscillations or variations in the level velocity variances due
to classical correlations, as well as using them to distinguish This work was supported by the NSF under Grant No.
mixed from chaotic phase space, are both experimentally adNSF-PHY-9800106 and the ONR under Grant No. NOOO14-
cessible. 98-1-0079.
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