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Classical diffusion and quantum level velocities: Systematic deviations
from random matrix theory

Arul Lakshminarayan,* Nicholas R. Cerruti, and Steven Tomsovic
Department of Physics, Washington State University, Pullman, Washington 99164

~Received 10 May 1999!

We study the response of the quasienergy levels in the context of quantized chaotic systems through the
level velocity variance and relate them to classical diffusion coefficients using detailed semiclassical analysis.
The systematic deviations from random matrix theory, assuming independence of eigenvectors from eigenval-
ues, are shown to be connected to classical higher-order time correlations of the chaotic system. We study the
standard map as a specific example, and thus the well-known oscillatory behavior of the diffusion coefficient
with respect to the parameter is reflected exactly in the oscillations of the variance of the level velocities. We
study the case of mixed phase-space dynamics as well and note a transition in the scaling properties of the
variance that occurs along with the classical transition to chaos.@S1063-651X~99!11810-5#

PACS number~s!: 05.45.2a, 03.65.Sq, 05.45.Mt
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I. INTRODUCTION

The quantum spectrum is well known to reflect in seve
ways classical integrability or its lack thereof@1,2,4#. For a
completely chaotic, quantized system the energy eigenva
have characteristic, in fact, universal fluctuation proper
that coincide with random matrix theory~RMT! universality
classes and the eigenfunction components are also dis
uted as Gaussian random variables. However, there are
portant deviations from this dull uniformity imposed by th
underlying ~asymptotic! deterministic chaos. Classical per
odic orbits, a dense set of measure zero unstable orbits
troduce characteristic deviations that are well documen
including the phenomenon of eigenfunction scarring@3#. The
movement of energy levels with the variation of an exter
parameter, level dynamics, has also been studied by se
authors with different motivations@5–10#. It is known that
the motion of the energy levels as a function of the para
eter, now a psuedotime variable, is completely integra
whether the system is itself chaotic or not@11#. Nevertheless,
there are characteristic features that are introduced by ch
for instance, avoided crossings that may be characterize
the second derivative of the energy levels, i.e., the cur
tures.

Here we study level ‘‘velocities,’’ and relate them direct
to certain classical diffusion coefficients based on the dif
sion of the variation of the action with an external parame
Although we are using the term velocities, we are not d
cussing adiabatically changing a system, just the slope
the level curves as a function of a controllable paramete
has been known for some time that these are Gaussian
tributed with a variance that has been related to a class
‘‘generalized conductance,’’ especially in the context
weakly disordered metallic grains. Methods employed w
mostly field theoretic and RMT-based, while numeric
simulations of chaotic billiards led to the conjecture that
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behavior of disordered systems could be extended to cha
ones as well@8#.

The variance has a significance beyond setting the s
of the Gaussian distribution of velocities. It enters as a n
malization required to uncover possible universalities
parametric level correlations. It encodes the system spe
characteristics of level motions as a function of an exter
parameter. Level correlations and velocities are experim
tally accessible, for example, in microwave cavities@12# or
quantum dots. Although universal parametric correlations
not well established experimentally, a recent experiment,
ploiting the similarity of elastomechanical wave equations
flexural modes of plates to the Schrodinger equation, se
to lend support to it@13#.

In the case when the changing parameters are Ahara
Bohm flux lines that do not lead to any classical dynami
changes, but do lead to important spectral modifications,
relation between level velocities were semiclassically cons
ered in@14#. For a treatment of Hamiltonian flows see@15#.
Recent closely related work, in the context of Hamiltoni
flows, is also found in@16# where detailed results about th
variance of level velocities are presented for billiards.

We make precise the connection between classical di
sion and the variance of the level velocities in the simp
context of quantized maps or more generally time perio
systems where detailed semiclassical~and classical! analysis
is possible. We evaluate the variance for the standard ma
a function of the external kicking strength and show syst
specific correlations in the form of Bessel function oscil
tions. Since two-dimensional area preserving or more ge
ally symplectic maps are Poincare´ sections of Hamiltonian
flows, our analysis also reflects upon these systems an
consistent with results derived therein. On the other ha
due to the vastly simpler numerical and analytical work
volved with maps, they lend themselves to more detailed
extensive work.

We relate our analysis to a semiclassical evaluation
expectation values of generic operators in the eigenbasis
well as touch upon two parameter variations and their co
lations. The case when the dynamics leads to a mixed ph
space is generic and we find a Weyl-type expansion in\ for
ra,
3992 © 1999 The American Physical Society
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the variance. The principal contribution in this regime is w
predicted by a simple classical correlation, which vanishe
the system undergoes a transition to chaos. The diffe
scaling behaviors in effective\ for mixed and chaotic sys
tems can be experimentally observed. We will consider
standard map as an example. Others before us have
such systems to study level dynamics@9,17#.

II. THE STANDARD MAP AND RANDOM MATRIX
THEORY

Here we define the model studied below and derive
RMT predictions for these. Let the classical Hamiltoni
have the form

H5p2/22lV~q! (
n52`

`

d~ t2n!, ~1!

so that the Floquet operator connecting states just be
kicks is given by

U5exp~2 ip2/2\!exp@ ilV~q!/\#. ~2!

The time between kicks is taken to be unity, as there are
independent parameters already present, namely,l and N.
Such systems, known as quantum maps, were first studie
@18,19# and led to the uncovering of dynamical localizatio
akin to Anderson localization in disordered conductors@20#.
We will typically consider the above to be the way the p
rameter of interest~l! enters the problem.

While this is a map on the plane~for one-degree-of-
freedom systems!, we consider their restriction to the toru
@0,1)2. This is essential as we have in mind bounded Ham
tonian systems and not open scattering ones. Periodic bo
ary conditions are imposed in bothp and q directions. We
will assume thatV(q) is a smooth function on@0, 1! with
unit periodicity. Denote its average as

V̄5E
0

1

V~q!dq. ~3!

Let the quantum map be theN dimensional unitary matrix
operator denoted byU. Maps, such as the standard map
stricted to a torus, are quantized using standard canon
quantization@21#. Periodic boundary conditions in both ca
nonical variables impose a finite number of states, which
the inverse effective Planck constant (h51/N). Thus, the
classical limit is approached in the largeN limit. Various
quantum maps on the torus have been studied and form
important part of the literature on quantum chaos due to t
inherent simplicity@22–25#. The discrete spectra~N levels!
obtained are then analyzed for various properties, in part
lar, here the eigenangle velocities are obtained.

The classical standard map is given by the recursion

qi 115~qi1pi 11!mod~1!, ~4!

pi 115@pi2~k/2p!sin~2pqi !#mod~1!,

wherei is the discrete time. This is the solution to the Ham
tonian equations of motion for the potentialV(q)
5cos(2pq) and the Hamiltonian in Eq.~1!. The dynamical
l
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variables are monitored just before the kicks, andl
5k/(2p)2. The standard map is of central importance
many other maps are locally described by this and the po
tial may be considered to be the first term in the Four
expansion of more general periodic potentials. The para
eter k is of principal interest and it controls the degree
chaos in the map; a complete transition to ergodicity is
tained above values ofk'5, while the last rotational
Kolmogorov-Arnold-Moser ~KAM ! torus breaks around
k'.971 @26#.

The quantum map in the discrete position basis is giv
by @27#

^nuUun8&5
1

AiN
exp@ ip~n2n8!2/N#

3expS i
kN

2p
cos@2p~n1a!/N# D . ~5!

The parameter to be varied will be the ‘‘kicking strength’’k,
while phasea will be used to avoid exact quantum symm
tries, andn, n850,...,N21. The eigenvalue problem of th
unitary matrix is written asUuc j&5exp(2ifj)ucj&. The ei-
genanglesf j are real and their variation with the parametek
~level velocities! are given simply by the matrix elements

df j

dk
5

N

2p
^c j uVuc j&5

N

2p
^c j ucos~2pq!uc j&. ~6!

The 2p factor is the result of choosingk as the relevant
parameter and notk/2p and we retain this as this corre
sponds to the more conventional usage where the last K
torus breaks when the parameter value is just under unit

It is then clear that studying level velocities is equivale
to studying expectation values of operators in the eigenba
Thus, if we requirê c i uAuc i& we would look at the modified
unitary operator~assumingA is Hermitian!

U5U0 exp~2 ilA/\!, ~7!

whereU0 is the quantum system under study. Then, the
pectation values are simply the corresponding level velo
ties evaluated atl50, multiplied by\. If one may identify
the classical canonical transformation generated byA, we
could study a modified classical map as well. However, si
l50, it is the properties of the original classical map th
will be relevant. Reference@28# already discussed the gen
eral problem of semiclassical evaluation of matrix eleme
and our following work may be viewed in this context a
well.

From the Gaussian distribution of eigenfunctions for
quantum chaotic system we expect the level velocities
similarly distributed. We will concentrate on the variance
these velocities, namely, the sum:

s2~k,N!5
1

N (
j 51

N S df j

dk D 2

2F 1

N (
j 51

N S df j

dk D G2

. ~8!

We will assume, as is the case with the standard map
ample, that the average vanishes, i.e.,V̄50. Later we will
generalize to the case of a nonvanishing average, or ex
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3994 PRE 60LAKSHMINARAYAN, CERRUTI, AND TOMSOVIC
tation values of operators with nonzero traces. Figure
shows a scaleds2 as a function of the parameterk. At about
k'5 the variance settles down to a near constant; this v
coincides with the disappearance of major islands of stab
in the classical phase space. What interests us primarily h
however, is the clear oscillations that persist as a function
k right into regions of large chaos as shown in the inset.

First, we study the value around which the oscillatio
occur, as this is provided by assuming RMT models. Us
Eq. ~6! we get

sRMT
2 5

N

4p2 (
m50

N21 S (
n50

N21

z^fmun& z2V@~n1a!/N# D 2

5
N

4p2 (
m50

N21 S (
n50

N21

z^fmun& z4$V@~n1a!/N#%2

1 (
nÞn8

z^cmun& z2z^fmun8& z2V@~n1a!/N#

3V@~n81a!/N# D . ~9!

The eigenfunctions have been expanded in a basis
diagonalizes the perturbationV, which we have taken to be
the position basis. Since we assume a zero-centered or t
less pertubation,

(
n50

N21

V@~n1a!/N#50.

We use the square of this relation in Eq.~9! while replacing
eigenfunction components by their ensemble averages~de-
noted by angular brackets! to derive that

FIG. 1. Scaled variance as a function of the parameterk, N
5300 anda50.35. The inset shows a part of the plot magnifie
the points are numerical data while the smooth line is twice
diffusion coefficient. Quantities plotted are dimensionless.
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sRMT
2 5

N3

4p2 V2~^ z^cmun& z4&2^ z^cmun& z2z^cmun8& z2&!.

~10!

A crucial step in writing down the above is to assume t
independence of the eigenfunction components from
specific position eigenvalues. While this is a reasonable
tistical assumption we will see below that it misses import
correlations that are incorporated naturally in semiclass
treatments. This is the origin of the nonuniversality of lev
dynamics, as this implies system-dependent correlation
fects. The same perturbations (V) applied to different chaotic
systems will result in different statistical responses, unl
the predictions of RMT.

We use standard results from RMT relevant to the Gau
ian orthogonal ensemble, which is applicable here as we
the relevant circular ensembles,@29#. In particular,

^u^cmun&u4&5
3

N~N12!
;

3

N2 , ^ z^cmun& z2z^cmun8& z2&

5
1

N~N12!
;

1

N2 .

We finally get

sRMT
2 5

N

2p2 V2. ~11!

As a special case for the standard mapV25 1
2 and we get

sRMT
2 5N/4p2. This last result explains the value abo

which the oscillations occur in Fig. 1. This implies that th
response of the system as measured by the movement o
energy levels is essentially the intensity of the perturbati
For chaotic systems then the response is independent o
system’s detailed dynamical properties. We must also p
out that when time reversal symmetry is broken the respo
is half as large. We now turn to the systematic oscillatio
that are not readily predicted by random matrix theory a
are manifestly system dependent.

III. SEMICLASSICAL THEORY

A. The chaotic phase space

We first develop in some generality expressions for
variance of the level velocities in which semiclassical me
ods can be easily applied. We write a Gaussian smoot
density of states@30# as

rM ~f!5 (
n52`

`

FM~n!exp~ inf!Tr Un, ~12!

whereFM(n)5exp(2n2/2M2)/(2p) is introduced to avoid
divergences. The exact spiked density of states is obtaine
the limit M→` although almost all levels will be resolved a
M5N, as the mean level spacing is 2p/N. The smoothed
step functionNM(f) is the integral of the level density with
respect tof. We derive then that

;
e
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E
0

2pS dNM~f!

dk D 2

df5
MNs2~k,N!

2Ap

52p (
n52`

` FM
2 ~n!

n2 U d

dk
Tr~Un!U2

.

~13!

The termn50 does not belong in the sum, and it is unde
stood that the first equality is an approximation that becom
exact asM→`. From this expression it follows that it is th
long time traces of the propagator, and therefore semicla
cally, long periodic orbits that are important.

Another very similar route is through the identity

Tr~UnV!5 (
j 51

N21

^c j uVuc j&exp~2 if jn!, ~14!

thus implying that

s2~k,N!5
N

4p2 ^uTr~UnV!u2&n , ~15!

where the angular brackets indicate averaging over timen in
the neighborhood of largen. We assume as is relevant fo
chaotic systems that there are no degeneracies. To make
nections with the standard map above we would takeV
5cos(2pq).

Now we make use of the semiclassical approximation
the trace of the propagator as a sum over periodic or
@1,31# that is

Tr~Un!;n(
p

Ap
~n! exp~2p iNSp

~n!2 ipnp/2!, ~16!

whereAp
(n)51/@2 sinh(lpn/2)#, and the sum is over periodi

orbits of periodn that are labeled byp and have a Lyapunov
exponentlp . The actions of these orbits are denoted bySp

(n)

and are calculated from the generating function of the c
sical map. The phasesnp are Maslov-like indices and wil
not concern us here.

There is also a generalization of the above, which is p
ticularly easy to derive when the perturbation is diagona
the position~or momentum! basis.

Tr~UnV!;(
p

Ap
~n! exp~2p iNSp

~n!2 ipnp/2!(
j 51

n

V~xj
p!.

~17!

Here,V(xj
p) is the value of a phase-space representation

the operatorV that is evaluated along the periodic orbit l
beledp and at the point labeledj. An appropriate generali
zation in the energy domain for continuous time system
found in @28#. The sum around the periodic orbit of the fun
tion V is essentially the derivative of the action with th
parameter, and we may use either the first trace formul
conjunction with Eq.~13! or the second trace-formula wit
Eq. ~15!.

We take the second route as we connect with the
subsequently. Taking the modulus of the second trace
mula gives
-
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uTr~UnV!u2;(
p

Ap
~n!2S (

j 51

n

V~qj
p!D 2

1 (
pÞp8

Ap
~n!Ap8

~n!

3S (
j 51

n

V~qj
p!D S (

j 51

n

V~qj
p8!D

3exp@2p iN~Sp2Sp8!#. ~18!

As is usual, we have separated the diagonal contribu
from the ‘‘off-diagonal,’’ which corresponds to distinct pair
of orbits, with distinct actions. We have also assumed
simplicity, as is the case with the specific parameter variat
chosen above in the standard map, thatV(x) is only position
dependent; this does not alter the results below. We h
also included the phases into the actions.

Since we expect that long periodic orbits are importa
the diagonal approximation, which relies on random pha
may be violated due to subtle correlations among their
tions. The time at which we may expect action differences
the order of\ is the so-called log-time, or Ehrenfest tim
We argue that action differences are of the order of the o
separation, and since areas of the order of\ ~for two-
dimensional maps! would be populated with multiple peri
odic orbits beyond the log time, their action differenc
would also be comparable with\. However, long periodic
orbit actions are randomly distributed and will acquire co
relations only around the Heisenberg time. At this time t
off-diagonal terms will dominate the sum, as happens if
simply consider^uTr(Un)u2&n , which is asymptoticallyN,
while the diagonal term is linearly increasing in time.

However, the off-diagonal term vanished due to the su
of V(q) over very long periodic orbits. We may write fo
two distinct orbitsp andp8 after assuming uniform measur
and replacing time averages over the periodic orbit, by
phase-space average that

S (
j 51

n

V~qj
p!D S (

j 51

n

V~qj
p8!D;nV̄2. ~19!

From our initial assumption thatV̄50, the off-diagonal term
vanishes. The diagonal term is nonvanishing as we o
again treat periodic orbits as ordinary long chaotic trajec
ries and derive that

1

n S (
j 51

n

V~qj
p!D 2

[D~k!5C~0!12(
l 51

n

C~ l !, ~20!

where the time correlations are replaced by classical ph
space averages due to ergodicity.

C~ l !5^V~q0!V~ql !&5
1

A E
A

dq0dp0V~q0!V„f l~q0 ,p0!…,

~21!

wheref l(q0 ,p0)5ql , f l is the integrated dynamics in timel,
andA denotes both the phase space and its area~in the cases
considered this is unity!. We assume that these exist, and a
decreasing withl, typically exponentially for chaotic system
and that a few terms may be sufficient. This is not est
lished in generality and complications may arise due to m
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ginally stable orbits leading to nonexponential behaviors.
the standard map, coefficients up toC(2) are dominant and
sufficient to see the essential behavior. We have dropped
index p as now we will treat such long periodic orbits a
generic nonperiodic orbits. Indeed by using the ergodic th
rem we have already abandoned any particularities that
arise due to the orbit being periodic. Later, we remark o
case when we may not neglect off-diagonal terms.

The alternative route is to take the derivative of the fi
trace formula and use Eq.~13!. Again we neglect the off-
diagonal terms for reasons given above. We will assume
the derivatives of the actions with the parameter~action ve-
locities!, for a given period or period interval, are such th
their average is zero while their variance is proportional
the time period. This assumption is equivalent to the van
ing of the phase-space average ofV(q) and the presence o
ergodicity. This was noted for general Hamiltonian syste
in @32#, and we will see below in the context of maps ho
this simply arises. We replace then for each timen the indi-
vidual action velocities~squared! by the variance,

K S dSp
~n!

dk D 2L
p

5D~k!n, ~22!

where the angular brackets indicate the average over per
orbits of periodn.

In either approach, the uniformity principle@33# is applied
in the form that there areehn/n orbits each with a Lyapunov
exponent approximatelyl per unit time. Then uAp

(n)u2

'e2ln, and assuming near equality of the topological e
tropy h andl, we derive from Eq.~18! that

uTr~UnV!u2;gD~k!. ~23!

Similarly from the other approach,

1

n2 U d

dk
Tr UnU2

;g
N2

4p2 D~k!. ~24!

The tilde sign in the above equations implies that the le
hand side can be expected to be the right-hand side in
average sense. The spread in timen will also reflect the
spread in the average action velocity diffusion coefficie
D(k) with period. Results not shown here indicate that in
chaotic regime this is an exponential distribution. The fac
g inserted above is due to the fact that symmetries can
pose distinct orbits to have identical actions. This factor m
be determined from classical and quantal symmetries,
includes phase-space symmetries. We finally get then f
either approach the response in terms of the variance o
level velocities:

s2~k,N!5g
N

4p2 D~k!. ~25!

Thus the variance of the level velocities is proportional
a classical diffusion coefficient that determines the diffus
of action velocities of periodic orbits. More explicit expre
sions for this coefficient are now derived. Area preserv
maps such as the standard map have a generating fun
L(qi 11 ,qi ;k) from which the map may be derived a
]L/]qi52pi and]L/]qi 115pi 11 ~Percival in@2#!. The to-
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tal action of a periodic orbit is equal toSp
(n)

5S iL(qi 11 ,qi ;k), where the sum is over then periodic
points of the orbitp. Thus we derive, after assuming that th
orbit is not at a point of bifurcation, that for a periodic orb

dSp
~n!

dk
5

]Sp
~n!

]k
. ~26!

We have not used the partial derivative sign in defining
level velocities although we assume that only one param
is varied. This is due to the subsequent fact that when
classical action derivative is written, it is a total derivative,
as much as the periodic orbit itself changes with the para
eter. These two, however, are shown to be equal in the c
of periodic orbits.

The variance is given by

K S dSp
~n!

dk D 2L
p

5K (
i , j 51

n

cos~2pqi !cos~2pqj !L
p

;
n

2
@112J2~k!#. ~27!

In the equality the sum is over different times along a giv
periodic orbit and then averaged over all periodic orbits
periodn, while the approximation arises from a replaceme
of the average by the usual ensemble average and reta
up to the second-order time correlation. More precis
C(0)5 1

2 , C(1)50, and C(2)5J2(k)/2, whereJ2(k) is a
Bessel function. These are derived from

C~0!5
1

n (
i 51

n

cos2~2pqi !;E
0

1E
0

1

cos2~2pq!dq dp5 1
2 ,

C~1!5
1

n (
i 51

n

cos~2pqi !cos~2pqi 11!

;E
0

1E
0

1

cos~2pq!cos$2p@q1p

2~k/2p!sin~2pq!#%dq dp50, ~28!

C~2!5
1

n (
i 51

n

cos~2pqi 21!cos~2pqi 11!;E
0

1E
0

1

3cos@2p~q2p!#cos$2p@q1p2~k/2p!

3sin~2pq!#%dq dp

5J2~k!/2.

The symmetry factor isg52 for the standard map if we
assume time-reversal invariance alone. This is the case
the data presented in Fig. 1 as we have intentionally bro
the phase-space symmetry in the quantum system by as
ing a50.35 ~generic value! rather thana50.5, which will
lead to twice the variance. Periodic orbits are either s
symmetric or more generically have symmetric partners w
identical actions. The Bessel functions are characteristic
the diffusion coefficient in the standard map; the abo
simple derivation was proposed in the context of determ
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istic diffusion in @34#. However, we note that the diffusio
relevant for level velocities is the diffusion in the action v
locities and not the momentum, which is the usual quan
in which diffusion is studied@35#.

The linear time dependence is a consequence of ergo
ity, whereby time averages are replaced by phase-space
erages, and the coefficient is also easy to find and is
scaling of the parameter introduced to uncover possible
versalities in level dynamics. These then are the oscillati
observed in the figure. The bold line in the inset is 2D(k)
5@112J2(k)#. The significant deviation around the fir
minimum in the inset (k'6.5) from theory could be due to
the presence of small stable islands, which are the accele
modes and are known to lead to anomalous transport in
standard map~Chirikov in @2#!.

B. The mixed phase space

The regime where there is a mixed phase space consi
of large stable regions is generic, and in this case the ana
above fails: the assumptions about the trace formula and
uniformity principle operate only under conditions of com
plete hyperbolicity. While in the completely chaotic regim
the variance scales asN, in the mixed phase-space regime
~principally! scales asN2. This relates to the large hump i
Fig. 1, to which we now turn our attention. One way
relating the variance to classical quantities is to recogn
that

s2~k,N!5
N

4p2 ^Tr~U2nVUnV!&n , ~29!

where the average is once more the time average. Thus
variance of the quantum level velocities is directly the tim
average of operator autocorrelations. We consider the
when the average level velocity is zero, as the generaliza
is evident. Replacing operators by the corresponding cla
cal observables, we expect to get the variance in the m
phase regime. This is particularly successful as we are d
ing with averages over the entire quantum spectrum. T
we replace the trace operation divided byN with the classical
phase-space average to get

s2~k,N!cl5
N2

4p2 E
0

1

dp0E
0

1

dq0V~q0!^V„q~n!~q0 ,p0!…&n ,

~30!

whereq(n)(q0 ,p0) is the position aftern iterations starting
from the initial condition (q0 ,p0). For the case in Fig. 1
V(q)5cos(2pq) and Fig. 2 compares in the mixed phas
space regime the exact quantum calculation with a pu
classical simulation corresponding tos2(k,N)cl . We see
that a simple classical simulation reproduces the curve
tremely well, including the secondary hump, until aroundk
'2p. It is quite remarkable that the classical curve cont
ues to pick out the initial Bessel function oscillations in t
deeply chaotic regime. In the figure the time average is d
over an ensemble for the first hundred iterations, and
oscillations indicate short time correlations that will strict
disappear with increasing time.

The transition to classical chaos is accompanied then
transition of the variance of the level velocities from a qu
y
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dratic to a linearN dependence. Based on this observat
we may write a general expression for the variance of
level velocities as a Weyl series with principal terms

s2~k,N!5c1~k!N1c2~k!N2, ~31!

wherec1(k) and c2(k) are system dependent and we ha
given above their expressions assuming only one of them
appreciable. Note that we have not evaluatedc1(k) in the
mixed phase-space regime, and that this will not in gene
vanish. On the other hand, we expect thatc2(k) vanishes as
a classical transition to chaos occurs. This is illustrated
Fig. 3, wherec2(k) is evaluated based on a best fitting cur
using fiveN values, equally spaced, between 100 and 5
The curve is fitted by assuming a third-order polynomial inN
for which the coefficient ofN3 returned by the fit was alway
of the order of 1026 or less.

In general, the RMT result derived earlier, Eq.~11!, will
be correct under the assumption thatC( l )5C(0)d0,l , imply-
ing delta correlated processes. Thus the departures from
versality is related to higher-order time correlations. The
sponse of the system is not only dependent on the streng
the perturbation, but also on the dynamical correlations
herent to the system.

C. Generalizations

We remark now on the general caseV̄Þ0. This implies an
overall drift to the energy levels due to changing phase-sp
volumes. Using Eq.~19! and adding and subtractingnV̄2

from the diagonal part of Eq.~18!, we get after using
^uTr(Un)u2&n5N,

s2~k,N!5
N

4p2 g@D~k!2V̄2#. ~32!

FIG. 2. Same as Fig. 1, comparing mainly in the mixed pha
space regime the exact variance~dots! with the classical estimate
~line!. The classical estimate is after averaging over a hundred t
steps. Quantities plotted are dimensionless.
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The large chaos limit of this is

s2~`,N!5
N

4p2 g~V22V̄2!, ~33!

and is the RMT result.
Variations of two independent parameters is an import

problem, considering that many novel effects, including g
metric phases may be observed. Here we will consider,
generalization of the above, correlations between indep
dent parameter variations. We assume that the level ve
ties are given by the matrix elements

]f j

]l i
5

N

2p
^c j uVi uc j&, ~34!

wherei 51, 2, andl i are two independent parameters wh
Vi are two Hermitian operators. Thus the correlations c
sidered below are also correlations between diagonal ma
elements of two arbitrary Hermitian operators.

We derive then that

1

N (
j 51

N
]f j

]l1

]f j

]l2
5

N

4p2 ^Tr~UnV1!Tr~U2nV2!&n . ~35!

Using methods as outlined above the correlation functio
semiclassically evaluated and we get

s~l1 ,l2![
1

~s1s2! S K ]f j

]l1

]f j

]l2
L

j

2K ]f j

]l1
L

j

K ]f j

]l2
L

j
D

;
@D~l1 ,l2!2V1 V2#

A~D12V1
2!~D22V2

2!
. ~36!

FIG. 3. The coefficientc2(k) as a function of the paramete
note that it reflects the classical transition to chaos. Quantities p
ted are dimensionless.
t
-
a
n-
ci-

-
ix

is

FunctionD is a generalization of Eq.~20! involving the dy-
namical correlation between the functionsV1 andV2 :

D~l1 ,l2!5
1

A S (
l 52`

` E
A

V1~q0 ,p0!V2~ql ,pl !dq0dp0D ;

~37!

the dynamical variables after a timel integrated from
(q0 ,p0) are denoted (ql ,pl) while D1,2 refer to the correla-
tions appropriate to them individually and defined earlier
Eq. ~20!. Note that the backward and forward correlatio
( l ,0,l .0) are not, in general, equal. We remark that o
derivations have assumed time-reversal symmetry, and
the factorg is responsible also for phase-space symmetrie
may be generalized to include the factors that come du
breakdown of time reversal, or inclusion of spin.

We finally consider the situation where not only the av
agesV̄i vanish, but also there is no tangible correlation b
tween them, i.e.,D(l1 ,l2)50. Then, the semiclassical ex
pressions above give zero and are incapable of capturing
small albeit finite and rapid oscillations~with parameter!.
This limitation is, of course, evident all along, including Fi
1, where the Bessel function captures the low frequency
cillations only.

In Fig. 4, is one such example where we have conside
V15cos(2pq) andV25cos(4pq). The parameterl2 is set at
zero so that the relevant classical system is still the stand
map, while the other parameter isk above. The correlation is
seen as a function of this last parameter, the average act
vanishing. We see that this measure too captures the tra
tion from mixed phase space to chaotic phase space, but
after the transition there are only extremely rapid oscillatio
about zero, although there are quite frequently fairly lar
correlations. In fact, the frequency of the oscillations are
rapid that they seem to have self-similar properties as a

t-
FIG. 4. The quantum correlation between the matrix element

the two operators cos(2pq) and cos(4pq) whose classical correla
tion vanishes in the chaotic regime. Quantities plotted are dim
sionless.
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dom fractal. We may estimate the order of magnitude of
frequency if we assume that these arise from the off-diago
part of the semiclassical sums. The magnitude of the par
eter change needed to change a typical orbit action byh or
(1/N) is needed. From the fact that action changes hav
variance proportional to the period, we getuDSu;AnuDlu,
and thereforeuDlu;N23/2, if we take as the periodn5N,
which is the Heisenberg time and represents the time
which the spectrum is practically resolved.

In conclusion then, we have studied variances of le
velocities and their generalizations in the chaotic as wel
mixed phase-space regimes. Noting that the transition
chaos is perfectly reflected in this measure, we derived
tailed formulas for them in terms of classical correlation c
efficients and illustrated this with the help of the standa
map. The mixed phase-space regime was surprisingly
captured by a simple classical estimate. The observation
oscillations or variations in the level velocity variances d
to classical correlations, as well as using them to distingu
mixed from chaotic phase space, are both experimentally
cessible.
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The possibility of using the level velocity in conjunctio
with wave-function intensities in a measure of phase-sp
localization has been proposed@36#, and it is hoped that this
detailed understanding of the level velocities will help in th
as well. In particular, this measure is a special case of
correlation between two operators discussed above, with
important complication being that the Wigner transform
the relevant operator, a projector in phase space, varies
scales of order\. We have also noted that the RMT resul
after assuming independence of eigenvalues and eignef
tions are capable of predicting the level velocities only in t
limit of extremely large chaos, or equivalently ignoring a
higher-order time correlations other than the zeroth.
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